A family of smooth quasi-interpolants defined over Powell-Sabin triangulations

نویسنده

  • Hendrik Speleers
چکیده

We investigate the construction of local quasi-interpolation schemes for a family of bivariate spline functions with smoothness r ≥ 1 and polynomial degree 3r−1. These splines are defined on triangulations with Powell-Sabin refinement, and they can be represented in terms of locally supported basis functions which form a convex partition of unity. Using the blossoming technique, we first derive a Marsden’s identity representing polynomials of degree 3r − 1 in such a spline form. Then we present a simple approach to construct various families of smooth quasi-interpolation schemes involving values and/or derivatives of a given function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic spline quasi-interpolants on Powell-Sabin partitions

In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.

متن کامل

Multivariate normalized Powell-Sabin B-splines and quasi-interpolants

We present the construction of a multivariate normalized B-spline basis for the quadratic C-continuous spline space defined over a triangulation in R (s ≥ 1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices ...

متن کامل

On the Lp-stability of quasi-hierarchical Powell-Sabin B-splines

Quasi-hierarchical Powell-Sabin splines are C-continuous quadratic splines defined on a locally refined hierarchical triangulation. They admit a compact representation in a normalized B-spline basis. We prove that the quasi-hierarchical basis is in general weakly Lpstable, but for a broad class of hierarchical triangulations it is even strongly Lp-stable.

متن کامل

Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations

We construct a suitable B-spline representation for a family of bivariate spline functions with smoothness r ≥ 1 and polynomial degree 3r − 1. They are defined on a triangulation with PowellSabin refinement. The basis functions have a local support, they are nonnegative and they form a partition of unity. The construction involves the determination of triangles that must contain a specific set ...

متن کامل

Surface Compression with Hierarchical Powell-Sabin B-splines

We show how to construct a stable hierarchical basis for piecewise quadratic C continuous splines defined on Powell–Sabin triangulations. We prove that this hierarchical basis is well suited for compressing surfaces. Our compression method does not require the construction of wavelets which are usually expensive to compute, but instead we construct a stable quasi-interpolation scheme for our sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012